Classifying High-Noise EEG in Complex Environments for Brain-Computer Interaction Technologies
نویسندگان
چکیده
Future technologies such as Brain-Computer Interaction Technologies (BCIT) or affective Brain Computer Interfaces (aBCI) will need to function in an environment with higher noise and complexity than seen in traditional laboratory settings, and while individuals perform concurrent tasks. In this paper, we describe preliminary results from an experiment in a complex virtual environment. For analysis, we classify between a subject hearing and reacting to an audio stimulus that is addressed to them, and the same subject hearing an irrelevant audio stimulus. We performed two offline classifications, one using BCILab [1], the other using LibSVM [2]. Distinct classifiers were trained for each individual in order to improve individual classifier performance [3]. The highest classification performance results were obtained using individual frequency bands as features and classifying with an SVM classifier with an RBF kernel, resulting in mean classification performance of 0.67, with individual classifier results ranging from 0.60 to 0.79.
منابع مشابه
A review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملComputer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity
Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...
متن کاملApplying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملCommon Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کامل